If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15x^2+135=0
a = -15; b = 0; c = +135;
Δ = b2-4ac
Δ = 02-4·(-15)·135
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90}{2*-15}=\frac{-90}{-30} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90}{2*-15}=\frac{90}{-30} =-3 $
| 3x+-0.8=3x+4 | | H(t)=-16t+50t+1000 | | -2x(x-12)-5(x+2)=-9x+4x | | 3(x+2)=-5-2(x-6) | | 1/2(g+18)=3 | | 16x^2-56x-96=4x^2 | | 5n+15=-85 | | 5n+15=(-85 | | 5=v4 | | 3^x+3^(x+1)=756 | | -1.4=v/3+6.1 | | k-8=11.8k−8=11.8 | | 2x-21=-29 | | 4x+34=9 | | 10c+1+42.5(2)=180 | | 23=12(6-x) | | (x+3)^2+(10)^2=(26)^2 | | 5x+35=200 | | X-y=-50 | | 0=-18r+18r | | 6x-27=13x+3 | | 25+4=10x+104 | | -4s-19=-19-4s | | 3v+3=1+3v | | -4-15z=-20-15z+16 | | 4x+5=2x+(-7) | | 2y-3-4=3+2y | | -0.5x=42 | | -2/5(x+2)=1/6(x+6) | | -6k+3=-8k-9 | | 13=5x/2-4/2 | | 48x^2-28x+6=0 |